Bis(Trimethylammonium) Decachlorotetracuprate(II)

By R.E.Caputo, M.J. Vukosavovich and R.D. Willett
Department of Chemistry and Chemical Physics Program, Washington State University, Pullman, Washington 99163, U.S.A.

(Received 25 July 1975; accepted 16 December 1975)

Abstract

CH}_{3}\right)_{3} \mathrm{NH}_{2} \mathrm{Cu}_{4} \mathrm{Cl}_{10}\right.\) is monoclinic, space group $P 2_{1} / c$, with $a=6.114$ (3), $b=10.253$ (4), $c=$ 19.05 (1) \AA and $\beta=97.88$ (3) $)^{\circ} . \varrho_{\text {calc }}=2.06, \varrho_{\text {cbs }}=2.04$ $\mathrm{g} \mathrm{cm}^{-3}, Z=2$. The $\mathrm{Cu}_{4} \mathrm{Cl}_{10}^{2-}$ anion exists as a discrete bibridged tetramer with average $\mathrm{Cu}-\mathrm{Cl}$ distances of $2 \cdot 28 \AA$. The nearly planar tetramer anions stack above each other to give either a $4+1$ or a $4+1+1$ coordination geometry for each copper ion.

Introduction. Dark brick-red hygroscopic needle crystals of $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}\right]_{2} \mathrm{Cu}_{4} \mathrm{Cl}_{10}$ were prepared by slow cooling of a fivefold excess of anhydrous CuCl_{2} with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}$ in n-propanol. Analysis: theoretical $\mathrm{Cu} 34.85, \mathrm{Cl} 48.64, \mathrm{C} 9.89, \mathrm{~N} 3.84, \mathrm{H} 2.76$; experimental: Cu 35.05 , $\mathrm{Cl} 47.91, \mathrm{C} 9.82, \mathrm{~N}$ 3.89 , H 3.28%. A small crystal $(0.20 \times 0.12 \times 0.15$ mm) was removed from the solution and immediately mounted in a Lindemann glass capillary. Systematic absences for the monoclinic crystal were $l=2 n+1$ for $h 0 l$ reflections and $k=2 n+1$ for $0 k 0$ reflections, indicating the unique space group $P 2_{1} / c$. Intensity data were collected on an automated Picker full-circle diffractometer with Zr -filtered Mo $K \alpha$ radiation. A $\theta-2 \theta$ step scan was utilized with scans of $2 \cdot 2^{\circ}$ and 20 steps per degree and 2.0 s per step. Background measurements of 10 s were made before and after each scan. The standard deviation in intensity was calculated by $\sigma^{2}\left(I_{o}\right)=T C-2 B+(0.03)^{2} I_{o}^{2}$, where $T C=$ total counts, $B=$ background counts, and $I_{o}=T C-B C$. A total of 1544 reflections were collected in the range $20 \leq 45^{\circ}$, all of which were included in the complete data analysis. Three standards monitored every 30 reflections showed no systematic deviations from normal count-
ing statistics. Absorption corrections were made ($\mu=$ $4.59 \mathrm{~cm}^{-1}$) with transmission factors ranging from 0.53 to 0.58 .

Copper and chlorine positions were deduced from a Patterson function based on a partial set of film data collected in 1967 when the crystal decomposed during the data collection. Carbon and nitrogen positions were obtained from an electron density map based on later film data. Full-matrix least-squares refinement of the diffractometer data with anisotropic thermal parameters $\left[\omega_{n k l}=1 / \sigma^{2}(F)\right]$ procesded smoothly to a conventional R value of 0.095 for all reflections and a weighted R value of 0.061 . The standard error of an observation of unit weight was $1 \cdot 64$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). Final positional parameters are reported in Table 1 and pertinent distances and angles are given in Table 2.* The final difference map showed no unusual features, but did not allow unambiguous assignment of proton positions. Computer programs used were part of a local computer library (Anderson, 1971).

Discussion. The structure is characterized by the presence of discrete centrosymmetric $\mathrm{Cu}_{4} \mathrm{Cl}_{10}{ }^{2-}$ anions as shown in Fig. 1. This is the first structure of a noncluster copper halide tetramer which has been eluci-

[^0]Table 1. Final parameters for $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}_{2} \mathrm{Cu}_{4} \mathrm{Cl}_{10}\right.$
The standard deviation on the least significant digit is given in parentheses.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Cu}(1)$	$0 \cdot 1981$ (2)	$0 \cdot 4130$ (1)	0.46868 (8)	$0 \cdot 0186$ (4)	$0 \cdot 0088$ (2)	0.00173 (5)	-0.0044 (2)	0.0013 (1)	0.0003 (1)
$\mathrm{Cu}(2)$	$0 \cdot 6408$ (2)	$0 \cdot 2851$ (1)	$0 \cdot 40705$ (8)	0.0200 (5)	$0 \cdot 0066$ (2)	0.00206 (5)	0.0016 (2)	0.0020 (1)	-0.0003 (1)
$\mathrm{Cl}(1)$	$0 \cdot 3164$ (5)	$0 \cdot 3851$ (4)	$0 \cdot 3623$ (2)	0.0232 (9)	0.0140 (5)	0.0020 (1)	0.0069 (6)	0.0015 (2)	-0.0002 (2)
$\mathrm{Cl}(2)$	$0 \cdot 5217$ (5)	$0 \cdot 3196$ (3)	$0 \cdot 5161$ (1)	0.0225 (9)	0.0101 (4)	0.0019 (1)	-0.0054 (5)	0.0017 (2)	-0.0005 (2)
$\mathrm{Cl}(3)$	$0 \cdot 6870$ (5)	$0 \cdot 2144$ (3)	$0 \cdot 2996$ (2)	0.0306 (10)	0.0100 (4)	0.0024 (1)	-0.0017 (6)	0.0030 (3)	$0 \cdot 0011$ (2)
$\mathrm{Cl}(4)$	0.9517 (5)	$0 \cdot 1880$ (3)	$0 \cdot 4607$ (2)	0.0236 (10)	0.0081 (4)	0.0025 (1)	0.0045 (5)	0.0016 (3)	-0.0002 (2)
$\mathrm{Cl}(5)$	-0.1097 (4)	$0 \cdot 5306$ (3)	$0 \cdot 4213$ (1)	0.0205 (9)	$0 \cdot 0079$ (4)	0.0018 (1)	0.0035 (5)	0.0011 (2)	-0.0001 (2)
N	0.9103 (14)	0.4979 (9)	$0 \cdot 1644$ (5)	0.028 (3)	0.007 (1)	0.0026 (4)	-0.002 (2)	0.0023 (9)	$0 \cdot 0001$ (6)
C(1)	0.069 (2)	0.387 (1)	$0 \cdot 1683$ (7)	0.040 (5)	0.011 (2)	0.0044 (6)	0.008 (3)	$0 \cdot 006$ (1)	0.0005 (9)
C(2)	$0 \cdot 700$ (2)	0.464 (1)	$0 \cdot 1155$ (8)	0.028 (4)	0.011 (2)	0.0042 (6)	-0.004 (2)	0.000 (1)	-0.0018 (8)
C(3)	$0 \cdot 864$ (2)	$0 \cdot 535$ (1)	$0 \cdot 2378$ (6)	0.033 (4)	0.012 (2)	0.0018 (4)	-0.005 (2)	0.004 (1)	-0.0005 (7)

dated. The $\mathrm{Cu}-\mathrm{Cl}$ distances within the tetramer are all normal, ranging from 2.261 to $2 \cdot 321 \AA$ for the bridging $\mathrm{Cu}-\mathrm{Cl}$ distances (average $2.294 \AA$) and from 2.225 to $2 \cdot 262 \AA$ for the terminal $\mathrm{Cu}-\mathrm{Cl}$ distances (average $2 \cdot 244 \AA$). The tetramer shows distinct deviations from planarity; the distances from the mean plane are given in Table 3. These distortions are probably induced by the bulk of the trimethylammonium ions which hydrogen bond to the terminal chloride ions. Observed $\mathrm{C}-\mathrm{N}-\mathrm{Cl}$ angles indicate that a bifurcated hydrogen

Fig. 1. The centrosymmetric tetramer, showing interatomic distances (\AA).

Fig. 2. Illustration of interaction between tetramers.

Table 2. Bond distances and angles in $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}\right]_{2} \mathrm{Cu}_{4} \mathrm{Cl}_{10}$
Primes denote atoms in adjacent tetramers.

Distances (\AA)		Angles (${ }^{\circ}$)	
$\mathrm{Cu}(1)$ coordination sphere			
$\mathrm{Cu}(1)-\mathrm{Cl}(1)$	$2 \cdot 261$ (3)	$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(2)$	$86 \cdot 3$ (1)
$\mathrm{Cu}(1)-\mathrm{Cl}(2)$	$2 \cdot 271$ (3)	$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	$93 \cdot 4$ (1)
$\mathrm{Cu}(1)-\mathrm{Cl}(5)$	2.308 (3)	$\mathrm{Cl}(2)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	92.6 (1)
$\mathrm{Cu}(1)-\mathrm{Cl}(5)$	2.311 (3)	$\mathrm{Cl}(5)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	86.8 (1)
$\mathrm{Cu}(1)-\mathrm{Cl}\left(4^{\prime}\right)$	2.749 (3)	$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	171.4 (1)
$\mathrm{Cu}(1)-\mathrm{Cl}\left(2^{\prime}\right)$	$3 \cdot 225$ (3)	$\mathrm{Cl}(2)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	$173 \cdot 4$ (1)
$\mathrm{Cl}\left(4^{\prime}\right)-\mathrm{Cl}(1)$	3.704 (4)	$\mathrm{Cl}\left(4^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(1)$	$94 \cdot 8$ (1)
$\mathrm{Cl}(4)-\mathrm{Cl}(2)$	3.751 (4)	$\mathrm{Cl}\left(4^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(2)$	$96 \cdot 2$ (1)
$\mathrm{Cl}\left(4^{\prime}\right)-\mathrm{Cl}(5)$	3.601 (4)	$\mathrm{Cl}\left(4^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	$93 \cdot 8$ (1)
$\mathrm{Cl}\left(4^{\prime}\right)-\mathrm{Cl}(5)$	3.704 (4)	$\mathrm{Cl}\left(4^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	90.3 (1)
$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Cl}(1)$	3.858 (4)	$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(1)$	87.5 (1)
$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Cl}(2)$	3.754 (6)	$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(2)$	84.3 (1)
$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Cl}(5)$	3.759 (4)	$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	83.8 (1)
$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Cl}(5)$	$3 \cdot 940$ (4)	$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(5)$	89.2 (1)
$\mathrm{Cl}\left(5^{\prime}\right)-\mathrm{Cl}(3)$	>4.00	$\mathrm{Cl}\left(4^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Cl}(2)$	$177 \cdot 6$ (1)
$\mathrm{Cu}(2)$ coordination sphere			
$\mathrm{Cu}(2)-\mathrm{Cl}(1)$	$2 \cdot 291$ (3)	$\mathrm{Cl}(1)-\mathrm{Cu}(2)-\mathrm{Cl}(2)$	$84 \cdot 4$ (1)
$\mathrm{Cu}(2)-\mathrm{Cl}(2)$	$2 \cdot 321$ (3)	$\mathrm{Cl}(1)-\mathrm{Cu}(2)-\mathrm{Cl}(3)$	$90 \cdot 9$ (1)
$\mathrm{Cu}(2)-\mathrm{Cl}(3)$	$2 \cdot 225$ (3)	$\mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{Cl}(4)$	$90 \cdot 6$ (1)
$\mathrm{Cu}(2)-\mathrm{Cl}(4)$	$2 \cdot 262$ (3)	$\mathrm{Cl}(3)-\mathrm{Cu}(2)-\mathrm{Cl}(4)$	$93 \cdot 9$ (1)
$\mathrm{Cu}(2)-\mathrm{Cl}\left(5^{\prime}\right)$	2.936 (3)	$\mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{Cl}(3)$	$165 \cdot 4$ (1)
$\mathrm{Cl}\left(5^{\prime}\right)-\mathrm{Cl}(1)$	$3 \cdot 836$ (4)	$\mathrm{Cl}(1)-\mathrm{Cu}(2)-\mathrm{Cl}(4)$	$175 \cdot 0$ (1)
$\mathrm{Cl}\left(5^{\prime}\right)-\mathrm{Cl}(2)$	$3 \cdot 754$ (6)	$\mathrm{Cl}\left(5^{\prime}\right)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	$93 \cdot 6$ (1)
$\mathrm{Cl}\left(5^{\prime}\right)-\mathrm{Cl}(4)$	$3 \cdot 601$ (4)	$\mathrm{Cl}\left(5^{\prime}\right)-\mathrm{Cu}(2)-\mathrm{Cl}(2)$	90.5 (1)
		$\mathrm{Cl}\left(5^{\prime}\right)-\mathrm{Cu}(2)-\mathrm{Cl}(3)$	103.6 (1)
		$\mathrm{Cl}\left(5^{\prime}\right)-\mathrm{Cu}(2)-\mathrm{Cl}(4)$	86.7 (1)

Other intratetramer interactions

$\mathrm{Cl}(1)-\mathrm{Cl}(2)$	$3 \cdot 098(4)$	$\mathrm{Cu}(1)-\mathrm{Cl}(1)-\mathrm{Cu}(2)$	$95 \cdot 2(1)$
$\mathrm{Cl}(1)-\mathrm{Cl}(3)$	$3 \cdot 219(5)$	$\mathrm{Cu}(1)-\mathrm{Cl}(2)-\mathrm{Cu}(2)$	$94 \cdot 1(1)$
$\mathrm{Cl}(1)-\mathrm{Cl}(5)$	$3 \cdot 328(4)$	$\mathrm{Cu}(1)-\mathrm{Cl}(5)-\mathrm{Cu}(1)$	$93 \cdot 2(1)$
$\mathrm{Cl}(2)-\mathrm{Cl}(4)$	$3 \cdot 257(4)$	$\mathrm{Cu}(1)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$170 \cdot 6(1)$
$\mathrm{Cl}(2)-\mathrm{Cl}(5)$	$3 \cdot 309(4)$	$\mathrm{Cl}(3)-\mathrm{Cl}(1)-\mathrm{Cl}(5)$	$172.8(1)$
$\mathrm{Cl}(3)-\mathrm{Cl}(4)$	$3 \cdot 278(4)$	$\mathrm{Cl}(4)-\mathrm{Cl}(2)-\mathrm{Cl}(5)$	$175 \cdot 8(1)$
$\mathrm{Cl}(5)-\mathrm{Cl}(5)$	$3 \cdot 174(5)$	$\mathrm{Cl}(1)-\mathrm{Cl}(5)-\mathrm{Cl}(2)$	$178 \cdot 1(1)$

As illustrated in Fig. 2, the tetramers stack on top of each other to form linear chains parallel to the a axis. The shortest $\mathrm{Cl}-\mathrm{Cl}$ contacts between tetramers

Table 3. Least-squares plane for the $\mathrm{Cu}_{4} \mathrm{Cl}_{10}^{2-}$ tetramer in $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}\right]_{2} \mathrm{Cu}_{4} \mathrm{Cl}_{10}$

The equation of the plane is
$0.4909 x+0.8712 y-0.0006 z-3.8238=0$.
Atom Distance from plane (\AA)

$\mathrm{Cu}(1)$	$-0 \cdot 142$
$\mathrm{Cu}(2)$	0.124
$\mathrm{Cl}(1)$	$0 \cdot 101$
$\mathrm{Cl}(2)$	-0.066
$\mathrm{Cl}(3)$	-0.230
$\mathrm{Cl}(4)$	0.120
$\mathrm{Cl}(5)$	0.046

($3.604 \AA$) are just equal to the sum of the van der Waals radii. The stacking is such that $\mathrm{Cu}(2)$ assumes a $4+1$ coordination geometry, while $\mathrm{Cu}(1)$ takes on a $4+1+1$ geometry. For the $\mathrm{Cu}(1)$ ion, the axial bond lengths are significantly different $[\mathrm{Cu}-\mathrm{Cl}(4) 2.749$, $\mathrm{Cu}-\mathrm{Cl}(2) 3.225 \AA]$ and the coordination geometry shows a pronounced square-pyramidal type distortion as indicated by the $\mathrm{Cl}(\mathrm{eq})-\mathrm{Cu}(1)-\mathrm{Cl}(\mathrm{ax})$ bond angles [average $\mathrm{Cu}(\mathrm{eq})-\mathrm{Cu}(1)-\mathrm{Cl}(4), 93 \cdot 8 \AA$] and the trans $\mathrm{Cl}\left(\right.$ eq) $-\mathrm{Cu}(1)-\mathrm{Cl}(\mathrm{eq})$ angles (average $172 \cdot 4^{\circ}$). For $\mathrm{Cu}(2)$ the distortion of the CuCl_{4}^{2-} moiety is more complex, with $\mathrm{Cu}(2), \mathrm{Cl}(1), \mathrm{Cl}(2)$ and $\mathrm{Cl}(4)$ being approximately coplanar and the $\mathrm{Cu}(2)-\mathrm{Cl}(3)$ bond being tipped about 14° out of this plane away from the axial ligand.

The three unique bridging $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ bond angles average $94 \cdot 2^{\circ}$, but are individually $93 \cdot 2,94 \cdot 1$ and $95 \cdot 2^{\circ}$. Thus if, as has been proposed (Willett, 1973), this bridging angle controls the sign and magnitude of the magnetic exchange interaction, the $\mathrm{Cu}(1)-\mathrm{Cu}(1)$ interaction should be ferromagnetic, but the interaction between $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ will probably be antiferromagnetic. Attempts to characterize the magnetic properties of this system have been frustrated by the difficulty of obtaining bulk samples free from CuCl_{2} contamination.

Support from the National Science Foundation and the Research Corporation is gratefully acknowledged, as well as NSF Predoctoral Traineeship for R.E.C.

References

Anderson, D. N. (1971). Ph. D. Thesis, Washington State Univ., U.S.A.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Swank, D. D. \& Willett, R. D. (1974). Inorg. Chim. Acta, 8, 143-148.
Willett, R. D. (1973). Chem. Commun. p. 607.
Willett, R. D. \& Rundle, R. E. (1964). J. Chem. Phvs. 40 838.

Acta Cryst. (1976). B32, 2518

Dibenzo-1,3a,4,6a-tetraazapentalene

By Mary Burke Laing,* Robert A.Sparks, \dagger Michael J. Laing* and K. N. Trueblood
Department of Chemistry, \ddagger University of California, Los Angeles, California 90024, U.S.A.

(Received 10 February 1976; accepted 24 March 1976)

Abstract

C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4}\), monoclinic, $\mathrm{C} 2 / c, a=12.05$ (1), $b=5.541$ (5),,$c=14.71$ (1) $\AA, \beta=97.69$ (10) ${ }^{\circ}, Z=4$, $D_{c}=1.421, D_{x}=1.425 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation). The structure was determined from packing considerations by a computer search, and was refined by least squares to $R=0.09$ (photographic data). The molecule is planar and the bond distances are in good accord with the predictions of Hückel molecular orbital theory.

Introduction. Yellow needles grown from a $1: 1$ mixture of CHCl_{3} and CCl_{4} were supplied by Dr R. A. Carboni. Unit-cell dimensions were obtained from photographs

[^1]calibrated with superimposed CeO_{2}-powder photos ($a=5.411 \AA$), taken with $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.5418$ \AA). The systematic absences, $h k l$ with ($h+k$) odd and $h 0 l$ with l odd, indicated the space group to be $C c$ or $C 2 / c$; the structure analysis showed the latter to be correct. Intensities were measured visually and photometrically from integrated equi-inclination Weissenberg photographs taken with Ni -filtered $\mathrm{Cu} K \alpha$ radiation. Of the 1027 independent reflections within the $\mathrm{Cu} K \alpha$ sphere, 751 were observed, 182 were too weak to be measured, and 94 were inaccessible.

The approximate orientational parameters of the planar centrosymmetric molecule were found by a computer analysis of the positions of rigid assumed models situated at each of the two unique centers of symmetry of the presumed space group, $C 2 / c$, the origin and ($\frac{1}{4}, \frac{1}{4}, 0$), very much as described earlier for an-

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31694 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

[^1]: * Present address: 61 Baines Road, Durban, South Africa.
 \dagger Present address: Syntex Analytical Instruments, 10040 Bubb Road, Cupertino, California 95014, U.S.A.
 \ddagger Contribution No. 1726 .

